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J. Phys. A: Math. Gen., 13 (1980) 381-396. Printed in Great Britain 

The effect of disorder on the spectrum of a Hermitian 
matrix 
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Cavendish Laboratory, Madingley Road, Cambridge, UK 

Received 14 August 1978, in final form 23 March 1979 

Abstract. It is well known that the average distribution of eigenvalues of a matrix, whose 
elements have a Gaussian distribution, may be determined. Here it is shown that the sum of 
such a matrix with a non-fluctuating matrix can also be resolved, in as much as the problem 
can be reduced to the solution of a self-consistent Dyson equation, a non-linear equation 
well known in many-body theory. 

1. Introduction 

In certain problems (for example, in nuclear physics) spectra are so complicated that 
resort must be made to statistical methods of analysis (see Porter 1965, for a review). 
Within the constraints of certain (known) symmetries, the complexities are such that a 
description of, say, the density and spacing of states is adequate. For these purposes, 
much attention has been paid to the problem of diagonalisation of the random matrix 
(see for instance Wigner in Porter's book, Mehta 1967, Edwards and Jones 1976). Here 
each of the matrix elements of the 1-level system ( N  degenerate) has a random 
(Gaussian) fluctuation added to it, and the initial delta function density of states is 
broadened into the famous 'semi-circular law'. It is clear that the complex (apparently 
chaotic) and disordered band problems have much in common in their philosophy. 

Here we are interested in the problem of what happens to the density of states ( + ( E )  

in some known initial band when disorder of the above type is introduced. As will be 
seen below we will consider cases where our initial energy levels ei occur with a 
frequency ni where n,/N + 0;. say (written ( + ( E ) ) .  In such cases, the band is limited and 
the number of states normalisable to 1 or N. This point will be returned to, and rules 
out, for instance, the treatment of free electrons. If the states are labelled i, j ,  . . . , then 
we have an initial Hamiltonian matrix 

The elements Ki correspond to mixing of the states to give 
I .  
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It is seen that this situation corresponds more nearly to nuclear problems where the 
wavefunctions extend over a large portion of the nucleus and there is mixing of a 
complex character between the states. We shall deal with large systems (N large) where 
one would indeed expect the VI, to have a Gaussian distribution. 

It will turn out that in the analysis of the problem a self energy will be introduced, 

and that the lowest approximation to the self energy ( />) can be shown to be 
exact in the limit N -+ Co. Thus an interesting example is given of where the Dyson 
equation is exact and an insight is given to the sort of problems where the next 
correction (say is important. 

The exactness of the method is discussed in § 3. 
In appendix 1, the example of a rectangular initial band is taken to illustrate the 

result of level mixing on the density of states. In appendix 2 the semicircular law for a 
Hermitian matrix is rederived. This is done as the simplest illustration of the identities 
and method used in the general case of § §  2 and 3. Because the Hermitian case is 
illustrated, the result is that of Wigner (see Porter 1965) rather than that of Edwards 
and Jones (1976). 

2. Calculation of the density of states of a random matrix 

Following the application of the ‘replica method’ by Edwards and Jones (1976) to the 
semicircular problem, it is reasonable to enquire if any more complicated problems are 
as easily tractible. Instead of the above case where all N eigenvalues of the ordered 
system are E = 0, one can more generally take a distribution of the N levels of the 
ordered system. The ith level with energy ei will occur with a multiplicity n, such that 

1 ni = N, 
i 

and the ‘ordered’ matrix H will have N elements of the form E ,  when in the diagonal 
representation. The density of states is U ( € )  = (1/N) C, n,S(E -e , ) .  Then ‘noise’ VI, is 
added to the elements of HI,, as in Edwards and Jones (1976), to give 

We shall attempt the diagonalisation of Bij in the form where, as above, the non- 
random part is in the diagonal representation. In appendix 3 we show that for Gaussian 
noise one can always use this form for H. 

The Schrodinger equation of the ordered system is thus 

(JI, are the eigenstates), and on disordering the Hamiltonian matrix is 

B k j  = E k 6 k j  + v k j  

with eigenvalue equation 

det[(E - E k ) 8 k j  - v k , ]  = 0. 

An expression of the density of states n ( E )  associated with (1) is easily obtained 
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(Edwards and Jones 1976, Dyson 1953) by the following identities: 

l N  
n ( E ) = -  c s(E-E,) 

N ; = 1  

1 1 
=--ImC 

NIT j E - i 6 - E j  

Im d 
N ~ T  d E  

- hl det[(E - € j ) a , k  - v k ] ,  

where Ei are the eigenvalues from equation (1). 
The small imaginary part -is in E is to be assumed in the following and will not be 

explicitly displayed. (It is necessary throughout in appendix 2 to ensure convergence.) 
Since we are dealing with Hermitian rather than real symmetric matrices, we use a 

generalised form of the identity used by Edwards and Jones (1976): 

which is discussed in appendix 2. n ( E )  is thus usefully rewritten 

1 d  
N ~ T  d E  

n(E)=--  -1mlndet- ' (H-E),  

where we shall use the above identity in det-'. Further, there is the usual representation 
of the In function, 

1 
In e = lim - (en - l), 

n+O n 

and thus 

1 d  1 
N ~ T  d E  n-to n n(E)=--  -1m lim-[det-"(l?-E)-l]. 

It is, however, the averaged density of states (n(E))",, which is of interest. 

1975, Dean and Edwards 1976) 
The det-" (a -E) can be treated by the 'replica' formalism (Edwards and Anderson 

a 

where (det-')" is treated as an n-fold muitiple integral and a, which labels the dummy 
variables p, we shall call a replica label. 

Averaging (2 )  over Vi will involve averaging the integrals (3). We take the v k  to 
have a Gaussian distribution, with 
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where 

yk = u j k  -k i Wjk 

and U is real symmetric and W real antisymmetric. J is of order 1. j ,  k, I ,  m run over 1 
to N. 

The probability distribution is 

The averaging of (3) gives 

The quartic term with double sum 
separate it into 'cy = p' and 'cy f 0' terms: 

is larger and requires further analysis. We 

where the first term is a simple square. This allows a parametrisation of the first term, to 
give 

Thus the expression for det-"(I? - E )  becomes 

Section 3 is concerned with showing that the 'other terms' (the 'cy # p' terms) are 

This being the case, one then sees that cy becomes a redundant label (it appears 
negligibly small in the limit N -+ W. 

identically in each element of the multiple integral) and we simply have in (7) 

This is the form used in equation (2) and we thus take the limit n + 0. Henceforth we 
drop the symbols ( ) from ( n  (E ) ) .  n ( E )  now stands for the average value, and is the only 
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quantity of interest: 

1 d  
NIT d E  

n (E)  = -- - Im In 

x exp( -i pip: (E - ei + A )  - 4 A 2 ) ] .  4J (8) 
i 

The J I I  dpl dpF integration can now be performed, and 
I I dA exp( -$Az -c ln(E - ei + A )  (9)  

i 

remains to be done. This can be rearranged into a form enabling 5 dh to be performed 
by the method of ‘steepest descents’ by noticing that 

N dc ( + ( E ) ,  I 
and hence we obtain a modified exponent. 

/ dh exp( -N[ -$+ I de ( + ( E )  ln(E - E  + A )  I) 
In the limit N + 00 J dA is performed by the method of steepest descents and the saddle 
point A. is given by the solution of the equation 

A 
= 0, 

a dispersion relation for Ao.  
Given an initial band (i.e. ( + ( E ) )  this can be solved for A o ,  and then 5 dh gives 

exp(-Ng(Ao)) x (terms O ( N ) )  

(with g(Ao) = Ai/4J2+5 de C T ( E )  ln(E - E  + A o ) ) .  Returning to equation (8), taking only 
terms O(eN) from expression (9) and taking In we obtain 

1 d  
n (E)  = - Im -g(Ao) 

IT d E  

By noticing that 8g(Ao)/8Ao = 0 (definition), 

d 8g A Ao 

Then 
n (E)  = Im(Ao) /2~J2 .  

This is the principal result of the present paper. 
Should the saddle point (Ao) be real (i.e. n(E)+O) the integral in equation (11) 

requires care (remember that E = E  - is )  and equation (12) is a more useful form for 
n(E) ,  The stationarity condition must be examined so that the correct solution to (9) is 
used (see Edwards and Jones 1976). 
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The class of bands tractable within this method is illustrated by the identities (10). In 
order to get a steepest-descents condition, the band must have a bounded set of states. 
This is so that ( + ( E )  is normalisable to a number order of 0(1) and that the transition 
1/N Xi + J  de ( + ( E )  can be made. Thus, free electrons would not be amenable to such 
treatment ( ~ ( 6 )  - E ' / *  which is unbounded). 

We remark here that the simpler problem of a random Hermitian matrix would be 
solved by putting ( + ( E )  = S ( E )  in equation (11). With this choice of ( + ( E )  we have for g 

g(A) = A2/4J2 +ln(E - E + A ) ,  

which makes contact with appendix 2 where the problem is solved directly for 
illustration. 

The above analysis can be amended for the case of a distribution with a finite mean 
giving a local mode analogously to Edwards and Jones (1976). 

3. Accuracy of the method and consideration of the Dyson equation 

3.1. 

The size of the 'other terms' in (6) and their 
dA exp(-Ng(A)) must be examined. In full, one has 

influence in the expression 

If one differentiates with respect to E, an expression of the form 

n d p  dp* pp* exp(-ipGi'p*)(l-p4+ps-.  . .) (14b) 

is obtained. This is simply the perturbation expression for the full Green function G in 
terms of the bare function GO and the interaction terms. Equation (14b) is the usual 
functional approach to a field theory, the p and p* being c-number field variables 
(rather than operators). 

Go here, however, already has some of the effect of the interaction in it via the self 
energy A. 

From equation (14b) we see the similarity with conventional many-body theory, the 
density of states n (E)  being proportional to Im G(E) .  

This problem clearly has much similarity with the problem of electron propagation 
with random scattering centres. Indeed, if the full expression (3) is expanded, 5 dp dp* 
is performed (connecting up the propagators) and then ( >" is performed, we have 

=>= - + 
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becoming (on doing ( )”) 

=>= - + A+- 

(see Edwards 1958). ( ) joins up the x’s). 

the vacuum in the case of two-body interactions), i.e. 
It is clear that there cannot be any bubble diagrams (corresponding to polarisation of 

* e, = 0. 

x::: 
However the result of averaging to give (5) in fact leads to an effective two-body 
interaction, thus: 

The replica formalism then ensures that the bubble diagrams vanish, since they are of 
the form 

/.a /,a 

and we keep only terms O(n) .  In this sense we may think of a as a spin label and we 
have an ‘n  + 0 field theory’. Unfortunately, we separate into a = p and a # /3 and 
hence the series in (14) contains 

which is O ( n )  as n + 0 and contributes. Further consideration shows, however, that 
k = i is demanded when a # p and hence this term is 

1 

which is a term 0(1) and not O ( N ) .  
Other terms in the series are also shown to be 0(1) or less; for example 

which is even smaller. 
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1 
- n ( n  - 1)-c, 

N 2  ik 
J-k;ci-p J -  k c -  p 

J, ff k. P J . f f  

which again are O(1). 
Furthermore, when cy # p one does not have the terms 

L ! 3 P e L  and 

at all. Hence, the entire series consists of terms of 0 ( 1 ) ,  and on resumming contributes 
a term of O(1) in the exponent. In the limit N + CO the other two terms in the exponent 
[NA2/4J2+N 5 de-(+(€) ln(E - -E + A ) ]  will dominate. Thus keeping only the ‘ a  = p’ 
terms in the exponent in 9 2 is justified and the analysis was exact. 

3.2. The exact Dyson equation 

The Dyson equation for the self energy C is 

where U ( k  - j )  is the Fourier transform of the two-body potential. Here it appears as 
J 2 / N  and thus a solution independent of k exists, namely a solution of 

1 c 2 1  
2J2-N i E-ei--C’ 

This is equation ( l l ) ,  where we have called the self-energy -A instead of E. 
In diagrammatic terms the above relation is 

’.= 0 
and is the simplest approximation to C. In the present case it is possible to show that this 
relation is also exact. Further irreducible diagrams are of smaller order in N. If we look 
at second order in the terms which have survived (i.e. the non-bubble diagrams of the 
‘cy = p’ class), we find 

- a - (remembering (4)) 
k J k J k  

which gives 

and hence 

Bo is an exact expression for C. 

In ( 1 5 )  the label k is put against the (amputated) external legs to indicate also its 
occurrence inside the diagram. Because of our form for Vjk, the only internal label is j .  
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Because V is essentially momentumless, we effectively lose an internal degree of 
freedom in higher irreducible diagrams. 

In 0 3.1 it was remarked that the diagrams which vanish identically were separated 

into two non-vanishing components. The ‘a  # p’ part gave n ( n  - 1) - -n and was 
disposed of in the series. However, the other half (- + n )  will be in the ‘ a  = p’ part, i.e. 

the exponent. This would normally be of the same size as e, since in 

s 
0 ia 
\ we no longer have the restriction k = j and the internal degree of freedom 

k. u k ,e  

( j )  exists. 
However, the exponent is treated in such a way that there can be no bubble 

diagrams. Taking p 4  + A + Ap2 makes the two-body interaction into an interaction 
with an auxiliary field A : 

Then, as in Edwards (1958) the propagators are put together first (we do dp dp*) and 

then do dA which connects the crosses in fS5 . . . and there are no bubbles. 
All that remain are 

and not - , a,... 
Appendix 1. 

As an example of how mixing of levels will change the density of states we take a simple 
rectangular band as a starting point: 

4 

Equation (1 1) gives us 

( A l . l )  
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Let us first look at the case of weak disorder (J + 0), since there a lot of analytic 

Let us look at energies E < emin to examine where the new band edge is and at how 

Changing variables 

progress can be made. 

states will be created by the disorder in a previously forbidden region. 

A = E  min - E - w  

and recognising that A is complex we have 

-E  - ~ ) A E  
= -ln(/w//lAE+w/)-i4 + i  arg(AE +a) 

2J2  
(A1.2) 

where 4 is the argument of w .  As J -$ 0 the LHS diverges. A solution of (A1.2) can then 
be seen with Iw / + 0 (because of the log on the RHS). Hence 

Iw1= AE e x p [ - h ~ / ( ~ ~ ~ , - E ) / 2 J ~ ] .  (A1.3) 

(For this we require 

AE (€,,,in - E )  >> J 2 ,  

i.e. the band width AE not too small and E not too close to the old band edge emin.) The 
imaginary parts of (A1.2) give 

- A ~ l w /  sin 4 /2J2  = -4 + tan-'[/w/ sin ~ / ( A E  + / U /  cos 4)1 
which gives (as lw /  + 0) 

~ ( A E / J ) ~  exp[-AE(Emin- E) /2J2]  sin 4 = 4. (Al .4)  

For a non-zero contribution to n ( E )  we require a finite imaginary part to w (i.e. to A ,  see 
equation (13)) and hence require 4 # 0. (A1.4) has a non-zero solution for 

$ ( A E / J ) ~  exp(-A€(cmin-E)/2J2) > 1, 

i.e. 

This implies that the new band edge is at 

Henceforth, measure energy from this edge (the new energy y )  

E = Eedge + Y, 
Then (Al.4) becomes 

exp(Aey/2J2) sin 4 = 4, 
which can be solved for y - 0 as 

4 = *{6[1 -exp(-yA~/2J~)] ) ' '~ .  

This must be put in equation (13) in its current form, 

n (E)  = - / U  sin 4/2.1rJ2, 

(A1.5) 

(A1.6) 
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and gives for the new density of states 

1 / 2 ( E  - Eedge)”’* 
J3 

n ( E )  = 
n-J(Ae) 

This is the same sort of singular behaviour at the edge as in the ‘semicircular law’, shown 
schematically in figure 1 as n (E): 

Figure 1. 

The solution of equation ( A l . l )  is in general a question of numerical analysis. For 
definiteness look at the solution around emin (it will be symmetric with respect to 
interchange between emin and emax). Let the dimensionless energy q be 

4 = (emin - €?)/A€. 

Scale the steepest-descents point A similarly to the dimensionless h, 
h = A /  Ae. 

Then (Al .  1) becomes 

-=In( a h  -), q + l - ; I  
2 q - A  

where a is the dimensionless parameter 

a = (A~/J ) ’  

and is a measure of the disorder. as compared with the initial band width. 

equations 
In its complex form = x + iy  one must solve the simultaneous transcendental 

-=ln ax 
2 (4-X)’+Y2 ’ 

ay = tan-’ - - tan-’ 
2 4 - x  

[ ( q +  1 - x ) ’ + y ’ ]  

Y 
q + l - x ’  

This is shown in the following graph (figure 2) where the new density of states is plotted 
in the region emax to Eedge (upper). The energy variable is the dimensionless q and hence 
the old density of states is of height 1 and width 1 on this scale. It can be seen that the 
weak disorker ((AEIJ)’ large) gives a band edge close to the old one, that there is a clear 
singular (4 ) behaviour at E e d g e  and that the density of states rapidly becomes large. 
Stronger disorder (smaller (Ae/J)’) gives a wider new density of states and thus we 
observe the effect of the disorder moving many states to lie outside (emin, emax). 



392 S F Edwards and M Warner 

Appendix 2. A simple illustration of the method-the random Hermiti matrix 

The Gaussian identity of the determinant of a real symmetric matrix Mij in Edwards and 
Jones (1976) was 

eip/4 N O3 

det-'/'(lA - M )  = (7) I fl dxk exp( -i 1 xl(lA -M),x,) (A2.1) 
--OD k i l  

where the infinitisimal part of A ensures convergence. The identity is most easily 
proved by performing an orthogonal transformation (Jacobian = 1) to a system where 
x ( 1 A  - M)x is diagonal. Since the matrix is real and symmetric, the eigenvalues are all 
real and the integral (A2.1) converges. Thus the method is limited to real symmetric 
matrices or (when extended as below) to Hermitian matrices (which also have real 
eigenvalues). 

In the case of a complex matrix there are 2 N  rather than N parametrising elements, 
and the identity is generalised to 

det-'(lA - V) = (-) ( n dpk dpz exp -i pl(lA - V),lp?) (A2.2) 
1 N  

2T k ( 11 

where p is now a complex number, 

p = x + i y  (x, Y real), 

and dp dp" means integrate over both independently varying components x and y ,  

j d p d p * + 2 i (  dx dy. 

The matrix V,, is taken to be 

V,, = U,, + iw,,, 

U,, = U], and w,, = - w,, 
where 

(that is, V is Hermitian) and the independent real components U and W are governed 
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by the probability distribution P( U, W ) ,  

P(Uij, Wii) = (N/27rJ2) exp[-(N/2J2)(Ui, + Wi,)] .  

We therefore expect a greater fluctuation in the values of the eigenvalues, i.e. a wider 
band. 

We now proceed as in Edwards and Jones (1976) to diagonalise this matrix Vii: 

Averaging the fluctuating part involving Kj, one obtains 

k, i  
k S J  

k i  
k < i  

Then, using P( U, W )  d U  d W, we obtain 

k < j  

(A2.3) 

(A2.4) 

In the second term of the exponent interchange the dummy variables cy and p. It is then 
identical to the first term. 

The p’s should now be expressed in terms of the x’s and y’s, and hence in the above, 
on separating into the ‘cy = p’  and ‘cy f p ’  terms, we obtain 

‘cy = p ’  
‘cy # p ’ :  

The reasons for ignoring the ‘cy f p’  terms in the limit N + CO are the same as in Edwards 
and Jones (1976), i.e. we obtain 

(xip” + yjP)2)(xj”’2 + y j y  

(x ip’ + i y  ip) )(xja) - iy j” )(x I,p) - i y jp’ )(xj’) + i y jP’ ). 

+terms cy # p and cross terms 

where 
Ri”)2 = Xja)2  + yi”’2 

and the ‘cy # p’  terms look typically like 

and (J2/N)xjp’xlP’yip’ylP’ which are even smaller. These are to be compared with the 
‘cy = p ’  terms which are of size nN. The ‘cy = p’ term is now parametrised (equivalent to 
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(3-6) of Edwards and Jones 1976): 

exp[ -z(c I?:)’] = ds exp( -iAs RT -A2Ns2/4Jz)(~Az/4~Jz)1~’, 
N i  i 

where we drop the label a since all replicas are the same and re-do the In. The 

(2i)N ll dxl dyl becomes 
1 

i i 

00 

( 4 ~ i ) ~ j  n R 1  dR1 exp - i A ( l + s ) c R ? )  = ( 2 ~ / A ) ~ ( l / ( l + s ) ) ~  
0 1  

Therefore, gathering terms, we obtain for the integral appearing in equation (A2.3) in 
the square brackets 

Jz = (N/47r)’”$ exp(-N In A )  ds exp(-Ng(s)) i 
where now g(s) is 

A ’ s2 /4J2  +In( 1 + s), 

a factor of 2 in the log term different from the result for the real symmetric matrix. This 
has the trivial consequence of changing the solutions S,’ to 

$[-1 *i(8J2/A2- 1)1’2], 

and the resulting density of states becomes 

= 0 otherwise. 

We again obtain the semicircular law with band edges at A = 1 2 4 2  J,  which compares 
with A = *2J for the case of the real symmetric matrix. 

The above n ( A )  is correctly normalised to unity and gives 2J’ for the second 
moment. A first principles calculation gives for the second moment 

N-’(Tr V’) = N-’(? 1 Viil’) 

in agreement with n ( A )  (with corrections of 0 ( 1 / N )  from a more careful consideration 
of the diagonal terms). 

Appendix 3. 

Vij +H, is clearly equivalent to Vi + since the members of the Gaussian ensemble 
V, are statistically invariant under any unitary transformation Ifii + eiSij. We exhibit 
this equivalence explicitly as follows. 
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Hij is diagonalisable by the unitary matrices Til: 

H;j = Tiiel6l,,,Tkj. 

Therefore in our identity 

det-' = I n dpl dpf eXp(-ipk(Hkj + Vkj)pF) 
I 

we perform an orthogonal transformation (rotation) 

P k  -$ 77pT;k 

P T  -$ q r 7 7 ;  
for which the Jacobian is 1. Then the identity (A3.1) becomes 

v dqi dvT eXp(-i77pept7E -i77pT&VkjTjrV:). 

(A3.1) 

(A3.2) 

We are then required to average such integrals over the components of Vij 
(= Uij + iWij), where 

w,. = - w.. and 11' 
u.. = U,. 

11 11 

We thus rearrange this part of the exponent 

+ (77pTikTr77: +77;TpkTi77r)Ukj+i (77pT;kqr77: -77;TpkT;77r)Wki 

Then (A3.2) is averaged, using 

k = j  k < j  

P(Ukj, wkj)-exp[-Uij/(2J2/N) - Wij/(2J2/N)] 

to give 

but 

T&Tpjk = TpckTij = spp) 
since the T are unitary matrices. Similarly, we obtain Sr,, and finally 
exp[(-J2/N) X P r  77p77;77r77:] or, if we had put in the replica labels, 

(A3.3) eXP(-$77P J2 
(a) 77P ( P I +  7 7 1  (a)+ d o ) ) .  

Pr 
aP 

(A3.3) is the type of result used in equation (A2.4) and is the quartic term used in § 2 

We are grateful to Dr R C Jones for his comments concerning this point. 
where the diagonal representation 77pep~i was used from the beginning. 

Acknowledgments 

Mark Warner is grateful to the Science Research Council for a research fellowship. 



396 S F Edwards and M Warner 

References 

Dean R T and Edwards S F 1976 Phil. Trans. R .  Soc. A 280 317-53 
Dyson F J 1953 Phys. Reo. 92 1331 
Edwards S F 1958 Phil. Mag. 3 1020 
Edwards S F and Anderson P W 1975 J. Phys. F: Metal Phys. 5 965-74 
Edwards S F and Jones R C 1976 J. Phys. A: Math. Gen. 9 1595-604 
Mehta M L 1967 Random Matrices and the Statistical Theory ojEnergy Levels (New York: Academic) 
Porter C E 1965 Statistical Theory ojSpectra: Fluctuations (New York: Academic) 


